ABSTRACT
In the poster the new PARC_CL 2.0 crack model (Physical Approach for Reinforced Concrete under Cyclic Loading condition) is presented. The PARC_CL 2.0 crack model, implemented in the user subroutine UMAT.for in ABAQUS code, is based on a fixed crack approach and allows to consider plastic deformations and hysteretic cycles. In the poster, the PARC_CL 2.0 crack model is firstly illustrated, highlighting the cyclic behaviour of concrete and reinforcement. Successively the model is validated by means of comparison with experimental tests on simple RC panels and finally the model is applied on the assessment of the cyclic behaviour of RC shear walls.

1. PARC_CL 2.0 CRACK MODEL
The proposed PARC_CL 2.0 [1] model is based on a total strain fixed crack approach. The concrete and steel behaviours, as well as their interaction effects, are modelled with constitutive relationships for loading-unloading-reloading conditions. The hysteretic stress-strain relationship for concrete does not consider plastic strains in tension while in compression field a simplified unloading path is implemented. The Menegotto-Pinto model is employed to represent the hysteretic stress-strain behaviour of reinforcing steel because it takes into account the bars yielding, strain hardening branch, the Bauschinger effect and the elastic modulus degradation under load reversal.

2. VALIDATION OF THE MODEL
In order to assess the efficiency of the proposed PARC_CL 2.0 model, some experimental tests on RC panels by Mansour and Hsu [2] are modeled by means of NLFEA. An acceptable level of agreement is observed between NLFEA and experimental results in terms of shear stress capacity, stiffness, ductility, shape of the unloading/reloading loops, and pinching characteristics of the response. Furthermore, the behavioral characteristics and failure modes observed during the tests, including yielding of reinforcement and crushing of concrete, were observed to be consistent with the analytically-predicted responses.

REFERENCES

CONCLUSIONS
Multi-layered shell elements modeling with PARC.CL 2.0 crack model can well predict the global Force-Displacement cyclic behavior of RC shear walls. Moreover, shell elements and PARC.CL 2.0 crack model are very powerful for catching torsion and shear phenomena and may be very useful tools also for the evaluation of local engineering parameters, like crack openings and stresses distribution.

EXPERIMENTAL SET-UP
NLFE MODEL
RESULTS
CRACK PATTERN