INTRODUCTION

- The correct functioning of the Large Hadron Collider (LHC) collimation system is crucial to safely operate the LHC.
- In the worst accident case corresponding to an asynchronous trigger of the beam dumping system, one or more high-energy density bunches might directly impact on a collimator with possible serious consequences.
- It is important to understand the implications of this catastrophic event on tertiary collimators (TCTs) because the latter protect critical structures such as the superconducting magnets.
- This work provides a more thorough understanding of the thermo-mechanical behaviour of TCTs during beam impact in accident scenarios.

THERMO-MECHANICAL SIMULATIONS

Simulation Flow

Focus of this work (FLUKA maps provided by L. Lari)

Jaw-Beam Angle Case Studies

M. Cauchi et al., PRST-AB, 18, 021004 (2014); M. Cauchi et al., PRST-AB, 18, 041002 (2015)

FINITE ELEMENT MODEL

Tertiary Collimator Model

3D Mesh & Boundary Conditions

Material Characterisation (Inermet®180)

Thermo-Physical Properties (Measurements at Austrian Institute of Technology)

Mechanical Properties (Measurements at Politecnico di Torino)

EXPERIMENTAL VALIDATION AT HiRadMat FACILITY

Experimental Setup

The LHC collimator prototype used for the test

Overview of Tests

Beam-Based Alignment

Post-Mortem Analysis

M. Cauchi et al., PRST-AB, 17, 021004 (2014)

Test Parameters

<table>
<thead>
<tr>
<th>Test</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS extraction intensity [x 10^12/p]</td>
<td>3.36</td>
<td>1.04</td>
<td>9.34</td>
</tr>
<tr>
<td>No. of bunches</td>
<td>24</td>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>Beam size at impact [x, y, mm^2]</td>
<td>0.38 x 0.38</td>
<td>0.50 x 0.50</td>
<td>0.49 x 0.49</td>
</tr>
<tr>
<td>Energy on jaw [kJ]</td>
<td>87.89</td>
<td>27.72</td>
<td>249.87</td>
</tr>
<tr>
<td>TNT equivalent [g]</td>
<td>21.01</td>
<td>6.62</td>
<td>59.72</td>
</tr>
</tbody>
</table>